476 research outputs found

    Amoxicillin-Clavulanate-Induced Liver Injury

    Get PDF
    Background and Aims Amoxicillin–clavulanate (AC) is the most frequent cause of idiosyncratic drug-induced injury (DILI) in the US DILI Network (DILIN) registry. Here, we examined a large cohort of AC-DILI cases and compared features of AC-DILI to those of other drugs. Methods Subjects with suspected DILI were enrolled prospectively, and cases were adjudicated as previously described. Clinical variables and outcomes of patients with AC-DILI were compared to the overall DILIN cohort and to DILI caused by other antimicrobials. Results One hundred and seventeen subjects with AC-DILI were identified from the cohort (n = 1038) representing 11 % of all cases and 24 % of those due to antimicrobial agents (n = 479). Those with AC-DILI were older (60 vs. 48 years, P < 0.001). AC-DILI was more frequent in men than women (62 vs. 39 %) compared to the overall cohort (40 vs. 60 %, P < 0.001). The mean time to symptom onset was 31 days. The Tb, ALT, and ALP were 7 mg/dL, 478, and 325 U/L at onset. Nearly all liver biopsies showed prominent cholestatic features. Resolution of AC-DILI, defined by return of Tb to <2.5 mg/dL, occurred on average 55 days after the peak value. Three female subjects required liver transplantation, and none died due to DILI. Conclusion AC-DILI causes a moderately severe, mixed hepatocellular–cholestatic injury, particularly in older men, unlike DILI in general, which predominates in women. Although often protracted, eventual apparent recovery is typical, particularly for men and usually in women, but three women required liver transplantation

    Storage Resource Manager version 2.2: design, implementation, and testing experience

    Get PDF
    Storage Services are crucial components of the Worldwide LHC Computing Grid Infrastructure spanning more than 200 sites and serving computing and storage resources to the High Energy Physics LHC communities. Up to tens of Petabytes of data are collected every year by the four LHC experiments at CERN. To process these large data volumes it is important to establish a protocol and a very efficient interface to the various storage solutions adopted by the WLCG sites. In this work we report on the experience acquired during the definition of the Storage Resource Manager v2.2 protocol. In particular, we focus on the study performed to enhance the interface and make it suitable for use by the WLCG communities. At the moment 5 different storage solutions implement the SRM v2.2 interface: BeStMan (LBNL), CASTOR (CERN and RAL), dCache (DESY and FNAL), DPM (CERN), and StoRM (INFN and ICTP). After a detailed inside review of the protocol, various test suites have been written identifying the most effective set of tests: the S2 test suite from CERN and the SRM-Tester test suite from LBNL. Such test suites have helped verifying the consistency and coherence of the proposed protocol and validating existing implementations. We conclude our work describing the results achieved

    Comment on Qian et al. 2008: La Niña and El Niño composites of atmospheric CO2 change

    Get PDF
    It is well known that interannual extremes in the rate of change of atmospheric CO2 are strongly influenced by the occurrence of El Niño-Southern Oscillation (ENSO) events. Qian et al. presented ENSO composites of atmospheric CO2 changes. We show that their composites do not reflect the atmospheric changes that are most relevant to understanding the role of ENSO on atmospheric CO2 variability. We present here composites of atmospheric CO2 change that differ markedly from those of Qian et al., and reveal previously unreported asymmetries between the effects on the global carbon system of El Niño and La Niña events. The calendar-year timing differs; La Niña changes in atmospheric CO2 typically occur primarily over September–May, while El Niño changes occur primarily over December–August. And the net concentration change is quite different; La Niña changes are about half the size of El Niño changes. These results illustrate new aspects of the ENSO/global carbon budget interaction and provide useful global-scale benchmarks for the evaluation of Earth System Model studies of the carbon system

    Functional cooperation between CREM and GCNF directs gene expression in haploid male germ cells

    Get PDF
    Cellular differentiation and development of germ cells critically depend on a coordinated activation and repression of specific genes. The underlying regulation mechanisms, however, still lack a lot of understanding. Here, we describe that both the testis-specific transcriptional activator CREMτ (cAMP response element modulator tau) and the repressor GCNF (germ cell nuclear factor) have an overlapping binding site which alone is sufficient to direct cell type-specific expression in vivo in a heterologous promoter context. Expression of the transgene driven by the CREM/GCNF site is detectable in spermatids, but not in any somatic tissue or at any other stages during germ cell differentiation. CREMτ acts as an activator of gene transcription whereas GCNF suppresses this activity. Both factors compete for binding to the same DNA response element. Effective binding of CREM and GCNF highly depends on composition and epigenetic modification of the binding site. We also discovered that CREM and GCNF bind to each other via their DNA binding domains, indicating a complex interaction between the two factors. There are several testis-specific target genes that are regulated by CREM and GCNF in a reciprocal manner, showing a similar activation pattern as during spermatogenesis. Our data indicate that a single common binding site for CREM and GCNF is sufficient to specifically direct gene transcription in a tissue-, cell type- and differentiation-specific manner

    STAT3 inhibition with Galiellalactone effectively targets the prostate cancer stem-like cell population."

    Get PDF
    Cancer stem cells (CSCs) are a small subpopulation of quiescent cells with the potential to differentiate into tumor cells. CSCs are involved in tumor initiation and progression and contribute to treatment failure through their intrinsic resistance to chemo- or radiotherapy, thus representing a substantial concern for cancer treatment. Prostate CSCs’ activity has been shown to be regulated by the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3). Here we investigated the effect of galiellalactone (GL), a direct STAT3 inhibitor, on CSCs derived from prostate cancer patients, on docetaxel-resistant spheres with stem cell characteristics, on CSCs obtained from the DU145 cell line in vitro and on DU145 tumors in vivo. We found that GL significantly reduced the viability of docetaxel-resistant and patient-derived spheres. Moreover, CSCs isolated from DU145 cells were sensitive to low concentrations of GL, and the treatment with GL suppressed their viability and their ability to form colonies and spheres. STAT3 inhibition down regulated transcriptional targets of STAT3 in these cells, indicating STAT3 activity in CSCs. Our results indicate that GL can target the prostate stem cell niche in patient-derived cells, in docetaxel-resistant spheres and in an in vitro model. We conclude that GL represents a promising therapeutic approach for prostate cancer patients, as it reduces the viability of prostate cancer-therapy-resistant cells in both CSCs and non-CSC populations

    A Selectable and Excisable Marker System for the Rapid Creation of Recombinant Poxviruses

    Get PDF
    Genetic manipulation of poxvirus genomes through attenuation, or insertion of therapeutic genes has led to a number of vector candidates for the treatment of a variety of human diseases. The development of recombinant poxviruses often involves the genomic insertion of a selectable marker for purification and selection purposes. The use of marker genes however inevitably results in a vector that contains unwanted genetic information of no therapeutic value.Here we describe an improved strategy that allows for the creation of marker-free recombinant poxviruses of any species. The Selectable and Excisable Marker (SEM) system incorporates a unique fusion marker gene for the efficient selection of poxvirus recombinants and the Cre/loxP system to facilitate the subsequent removal of the marker. We have defined and characterized this new methodological tool by insertion of a foreign gene into vaccinia virus, with the subsequent removal of the selectable marker. We then analyzed the importance of loxP orientation during Cre recombination, and show that the SEM system can be used to introduce site-specific deletions or inversions into the viral genome. Finally, we demonstrate that the SEM strategy is amenable to other poxviruses, as demonstrated here with the creation of an ectromelia virus recombinant lacking the EVM002 gene.The system described here thus provides a faster, simpler and more efficient means to create clinic-ready recombinant poxviruses for therapeutic gene therapy applications

    Transitions from Injection-Drug-Use-Concentrated to Self-Sustaining Heterosexual HIV Epidemics: Patterns in the International Data

    Get PDF
    Background: Injecting drug use continues to be a primary driver of HIV epidemics in many parts of the world. Many people who inject drugs (PWID) are sexually active, so it is possible that high-seroprevalence HIV epidemics among PWID may initiate self-sustaining heterosexual transmission epidemics. Methods: Fourteen countries that had experienced high seroprevalence (,20%) HIV epidemics among PWID and had reliable data for injection drug use (IDU) and heterosexual cases of HIV or AIDS were identified. Graphs of newly reported HIV or AIDS cases among PWID and heterosexuals were constructed to identify temporal relationships between the two types of epidemics. The year in which newly reported cases among heterosexuals surpassed newly reported cases among PWID, aspects of the epidemic curves, and epidemic case histories were analyzed to assess whether it was ‘‘plausible’ ’ or ‘‘highly unlikely’ ’ that the HIV epidemic among PWID might have initiated the heterosexual epidemic in each country. Results: Transitions have occurred in 11 of the 14 countries. Two types of temporal relationships between IDU and heterosexual HIV epidemics were identified, rapid high incidence transitions vs. delayed, low incidence transitions. In six countries it appears ‘‘plausible’ ’ that the IDU epidemic initiated a heterosexual epidemic, and in five countries it appears ‘‘highly unlikely’ ’ that the IDU epidemic initiated a heterosexual epidemic. A rapid decline in incidence among PWID after the peak year of new cases and national income were the best predictors of the ‘‘highly unlikely’ ’ initiation of a heterosexua

    Intellectual Property, Open Science and Research Biobanks

    Get PDF
    In biomedical research and translational medicine, the ancient war between exclusivity (private control over information) and access to information is proposing again on a new battlefield: research biobanks. The latter are becoming increasingly important (one of the ten ideas changing the world, according to Time magazine) since they allow to collect, store and distribute in a secure and professional way a critical mass of human biological samples for research purposes. Tissues and related data are fundamental for the development of the biomedical research and the emerging field of translational medicine: they represent the “raw material” for every kind of biomedical study. For this reason, it is crucial to understand the boundaries of Intellectual Property (IP) in this prickly context. In fact, both data sharing and collaborative research have become an imperative in contemporary open science, whose development depends inextricably on: the opportunities to access and use data, the possibility of sharing practices between communities, the cross-checking of information and results and, chiefly, interactions with experts in different fields of knowledge. Data sharing allows both to spread the costs of analytical results that researchers cannot achieve working individually and, if properly managed, to avoid the duplication of research. These advantages are crucial: access to a common pool of pre-competitive data and the possibility to endorse follow-on research projects are fundamental for the progress of biomedicine. This is why the "open movement" is also spreading in the biobank's field. After an overview of the complex interactions among the different stakeholders involved in the process of information and data production, as well as of the main obstacles to the promotion of data sharing (i.e., the appropriability of biological samples and information, the privacy of participants, the lack of interoperability), we will firstly clarify some blurring in language, in particular concerning concepts often mixed up, such as “open source” and “open access”. The aim is to understand whether and to what extent we can apply these concepts to the biomedical field. Afterwards, adopting a comparative perspective, we will analyze the main features of the open models – in particular, the Open Research Data model – which have been proposed in literature for the promotion of data sharing in the field of research biobanks. After such an analysis, we will suggest some recommendations in order to rebalance the clash between exclusivity - the paradigm characterizing the evolution of intellectual property over the last three centuries - and the actual needs for access to knowledge. We argue that the key factor in this balance may come from the right interaction between IP, social norms and contracts. In particular, we need to combine the incentives and the reward mechanisms characterizing scientific communities with data sharing imperative

    Deregulation of CREB Signaling Pathway Induced by Chronic Hyperglycemia Downregulates NeuroD Transcription

    Get PDF
    CREB mediates the transcriptional effects of glucose and incretin hormones in insulin-target cells and insulin-producing β-cells. Although the inhibition of CREB activity is known to decrease the β-cell mass, it is still unknown what factors inversely alter the CREB signaling pathway in β-cells. Here, we show that β-cell dysfunctions occurring in chronic hyperglycemia are not caused by simple inhibition of CREB activity but rather by the persistent activation of CREB due to decreases in protein phophatase PP2A. When freshly isolated rat pancreatic islets were chronically exposed to 25 mM (high) glucose, the PP2A activity was reduced with a concomitant increase in active pCREB. Brief challenges with 15 mM glucose or 30 µM forskolin after 2 hour fasting further increased the level of pCREB and consequently induced the persistent expression of ICER. The excessively produced ICER was sufficient to repress the transcription of NeuroD, insulin, and SUR1 genes. In contrast, when islets were grown in 5 mM (low) glucose, CREB was transiently activated in response to glucose or forskolin stimuli. Thus, ICER expression was transient and insufficient to repress those target genes. Importantly, overexpression of PP2A reversed the adverse effects of chronic hyperglycemia and successfully restored the transient activation of CREB and ICER. Conversely, depletion of PP2A with siRNA was sufficient to disrupt the negative feedback regulation of CREB and induce hyperglycemic phenotypes even under low glucose conditions. Our findings suggest that the failure of the negative feedback regulation of CREB is the primary cause for β-cell dysfunctions under conditions of pathogenic hyperglycemia, and PP2A can be a novel target for future therapies aiming to protect β-cells mass in the late transitional phase of non-insulin dependent type 2 diabetes (NIDDM)
    corecore